Performance Bond Refund | Performance Bond Vs. Payment Bond


Journal of Materials Engineering and Performance

, Volume 25, Issue 4, pp 1276–1283 | Cite as

Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

  • Wahiduzzaman
  • Mujibur R. KhanEmail author
  • Spencer Harp
  • Jeffrey Neumann
  • Quazi Nahida Sultana


The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm−1 which verifies the adsorption of CO2.


adsorption CO2 electrospinning HKUST-1 MOF nanofibers PAN 



The authors would like to express their utmost gratitude to the Center for Sustainability of Georgia Southern University to provide financial support for this project.


  1. 1.
    K. Mishra and S. Ramaprabhu, Nano Magnetite Decorated Multiwalled Carbon Nanotubes: A Robust Nanomaterial for Enhanced Carbon Dioxide Adsorption, Energy Environ. Sci., 2011, 4(3), p 889–895CrossRefGoogle Scholar
  2. 2.
    F. Akhtar, Q. Liu, N. Hedin, and L. Bergström, Strong and Binder Free Structured Zeolite Sorbents with Very High CO2-over-N2 Selectivities and High Capacities to Adsorb CO2 Rapidly, Energy Environ. Sci., 2012, 5, p 7664–7673CrossRefGoogle Scholar
  3. 3.
    C.A. Grande, R. Ribeiro, E.L.G. Oliveira, and A.E. Rodrigues, Electric Swing Adsorption As Emerging CO2 Capture Technique, Energy Procedia, 2009, 1(1), p 1219–1225CrossRefGoogle Scholar
  4. 4.
    P. Galhotra, J.G. Navea, S.C. Larsen, and V.H. Grassian, Carbon Dioxide (C16O2 and C18O2) Adsorption in Zeolite Y Materials: Effect of Cation, Adsorbed Water and Particle Size, Energy Environ. Sci., 2009, 2(4), p 401–409CrossRefGoogle Scholar
  5. 5.
    Q. Wang, J. Luo, Z. Zhong, and A. Borgna, CO2 Capture by Solid Adsorbents and their Applications: Current Status and New Trends, Energy Environ. Sci., 2011, 4(1), p 42–55CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Z.U. Wang, and H.C. Zhou, Recent Advances in Carbon Dioxide Capture with Metal-Organic Frameworks, Greenh. Gases Sci. Technol., 2012, 2, p 239–259. doi: 10.1002/ghg CrossRefGoogle Scholar
  7. 7.
    P. Pachfule, R. Das, P. Poddar, and R. Banerjee, Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link, Cryst. Growth Des., 2011, 11(4), p 1215–1222CrossRefGoogle Scholar
  8. 8.
    Z. Liang, M. Marshall, and L. Chaffee, CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) Versus Zeolite (13X), Energy Fuels, 2009, 23, p 2785–2789CrossRefGoogle Scholar
  9. 9.
    T.V.N. Thi, C.L. Luu, T.C. Hoang, T. Nguyen, T.H. Bui, and P.H.D. Nguyen, Synthesis of MOF-199 and Application to CO2 Adsorption, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4(3), p 035016CrossRefGoogle Scholar
  10. 10.
    R. Ostermann, J. Cravillon, C. Weidmann, M. Wiebcke, and B.M. Smarsly, Metal-Organic Framework Nanofibers via Electrospinning, Chem. Commun., 2011, 47, p 442–444CrossRefGoogle Scholar
  11. 11.
    Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, One-Dimensional Nanostructures, One-Dimensional Nanostructures, Chapter 2, Springer, Berlin, 2013, p 15–28Google Scholar
  12. 12.
    J.T. McCann, D. Li, and Y. Xia, Electrospinning of Nanofibers with Core-Sheath, Hollow or Porous Structures, J. Mater. Chem., 2005, 15, p 735–738CrossRefGoogle Scholar
  13. 13.
    E. Zussman, X. Chen, W. Ding, L. Calabri, and D. Dikin, Mechanical and Structural Characterization of Electrospun PAN-Derived Nanofibers, Carbon, 2005, 43(10), p 2175–2185CrossRefGoogle Scholar
  14. 14.
    P. Heikkilä and A. Harlin, Electrospinning of Polyacrylonitrile (PAN) Solution: Effect of Conductive Additive and Filler on the Process, eXPRESS, Polym. Lett., 2009, 3(7), p 437–445CrossRefGoogle Scholar
  15. 15.
    R. Jalili, M. Morshed, S. Abdolkarim, and H. Ravandi, Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers, J. Appl. Polym. Sci., 2006, 101(6), p 4350–4357CrossRefGoogle Scholar
  16. 16.
    L. Lange, F. Ochanda, S. Obendorf, and J. Hinestroza, CuBTC Metal-Organic Frameworks Enmeshed in Polyacrylonitrile Fibrous Membrane Remove Methyl Parathion from Solutions, Fibers Polym., 2014, 15(2), p 200–207CrossRefGoogle Scholar
  17. 17.
    Y. Wu, F. Li, H. Liu, W. Zhu, M. Teng, Y. Jiang, W. Li, D. Xu, D. He, P. Hannam, and G. Li, Electrospun Fibrous Mats as Skeletons to Produce Free-standing MOF Membranes, J. Mater. Chem., 2012, 22(33), p 16971–16978CrossRefGoogle Scholar
  18. 18.
    A. Centrone, Y. Yang, S. Speakman, L. Bromberg, G.C. Rutledge, and T.A. Hatton, Growth of Metal-Organic Frameworks on Polymer Surfaces, J. Am. Chem. Soc., 2010, 132(44), p 15687–15691CrossRefGoogle Scholar
  19. 19.
    N. Yan, R. Hua, G. Ning, and X. Ou, Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature, Chem. Res. Chin. Univ., 2012, 28(4), p 555–558Google Scholar
  20. 20.
    G. Hyde, K. Park, S. Stewart, J. Hinestroza, and G. Parsons, Atomic Layer Deposition of Conformal Inorganic Nanoscale Coatings on Three-Dimensional Natural Fiber Systems: Effect of Surface Topology on Film Growth Characteristics, Langmuir, 2007, 23(19), p 9844–9849CrossRefGoogle Scholar
  21. 21.
    E. Laurila, J. Thunberg, S.P. Argent, N.R. Champness, S. Zacharias, G. Westman, and L. Ohrstorm, Enhanced Synthesis of Metal-Organic Frameworks on the Surface of Electrospun Cellulose Nanofibers, Adv. Eng. Mater., 2015, 17(9), p 1282–1286CrossRefGoogle Scholar
  22. 22.
    J. Zamaro, N. Pérez, E. Miró, C. Casado, B. Seoane, C. Téllez, and J. Coronas, HKUST-1 MOF: A Matrix to Synthesize CuO and CuO-CeO2 Nanoparticle Catalysts for CO Oxidation, Chem. Eng. J., 2012, 195, p 180–187CrossRefGoogle Scholar
  23. 23.
    J. Zhao, M. Losego, P. Lemaire, P.S. Williams, B. Gong, S. Atanasov, T.M. Blevins, C.J. Oldham, H.J. Walls, S.D. Shepherd, M. Browe, G.W. Peterson, and G.N. Parsons, Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition, Adv. Mater. Interfaces, 2014, 1(4), p 1400040–1400045Google Scholar
  24. 24.
    J. Moellmer, A. Moeller, F. Dreisbach, R. Glaeser, and R. Staudt, High Pressure Adsorption of Hydrogen, Nitrogen, Carbon Dioxide and Methane on the Metal-Organic Framework HKUST-1, Microporous Mesoporous Mater., 2011, 138(1-3), p 140–148CrossRefGoogle Scholar
  25. 25.
    A. Millward and O. Yaghi, Metal-Organic Frameworks with Exceptionally High Capacity for Storage of CO2 at Room Temperature, J. Am. Chem. Soc., 2005, 127(51), p 17998–17999CrossRefGoogle Scholar
  26. 26.
    W. Isahak, Z.A. Ramli, M.W. Ismail, and K. Ismail, Adsorption-Desorption of CO2 on Different Type of Copper Oxides Surfaces: Physical and Chemical Attractions Studies, J. CO2 Util., 2013, 2, p 8CrossRefGoogle Scholar
  27. 27.
    J.R. Li, Y. Ma, C. McCarthy, J. Sculley, J. Yu, H. Jeong, P. Balbuena, and H. Zhou, Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks, Coord. Chem. Rev., 2011, 255(15-16), p 1791–1823CrossRefGoogle Scholar
  28. 28.
    Y. Wang, A. Benin, P. Jakubczak, R. Willis, and D. LeVan, CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC, Langmuir, 2010, 26(17), p 14301–14307CrossRefGoogle Scholar
  29. 29.
    M.P. Bernstein, D.P. Cruikshank, and S. Sandford, Near-Infrared Laboratory Spectra of Solid H2O/CO2 and CH3OH/CO2 Ice Mixtures, Icarus, 2005, 179(2), p 527–534CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Wahiduzzaman
    • 1
  • Mujibur R. Khan
    • 1
    Email author
  • Spencer Harp
    • 1
  • Jeffrey Neumann
    • 1
  • Quazi Nahida Sultana
    • 1
  1. 1.Department of Mechanical EngineeringGeorgia Southern UniversityStatesboroUSA

Personalised recommendations